
LOCATIONNick Manganelli

12345:
Lessons Learned building an Analysis Framework

around RDataFrame and CMS NanoAOD

Nicholas Manganelli

PhD Candidate, Compact Muon Solenoid Collaboration

1

LOCATIONNick Manganelli

12345:
Lessons Learned building an Analysis Framework

around RDataFrame and CMS NanoAOD

Nicholas Manganelli

PhD Candidate, Compact Muon Solenoid Collaboration

2

Thanks to the ROOT team!

Nick Manganelli

Compact Muon Solenoid’s
NanoAOD

• Data format for proton-proton collisions

• Root-based, O(1kB) per event

• High Level (not all particles, hits, tracks, etc.)

• Data stored as scalars and Jagged arrays of
primitive types (int, float, bool, …)

3

Nick Manganelli

Compact Muon Solenoid’s
NanoAOD

• Data format for proton-proton collisions

• Root-based, O(1kB) per event

• High Level (not all particles, hits, tracks, etc.)

• Data stored as scalars and Jagged arrays of
primitive types (int, float, bool, …)

• Contains “Collections” for muons, electrons,
jets, generator-level particles, with cross-
references via index-positions in linked
collection

• Coll. structure via naming convention

• Important collections: ~two-dozen variables

4

Nick Manganelli

What did I do?

• Built an RDataFrame-based analysis framework

• targeting a specific analysis, potentially for multiple related ‘decay channels’

• Wanted something fast, NanoAOD-compatible, using python as the interface

• Needed to be scalable - quick tests (fast turnaround to make decisions), scale up
to processing billions of events with O(100) systematic variations

• Development partially overlapped bamboo (2019 - 2021 principally)

• SPOILERS: Discovered how not to do a lot of things! <- good chunk of this
presentation

5

Nick Manganelli

Lesson 10:

Don’t work alone

• solo-graduate student (all PostDocs/

GradStudents finished and left group early
on)

• Few resources/knowledge of what other
RDF users were doing (learned of bamboo
~6 months deep in dev)

• All the good documentation, examples,
etc. are very appreciated!

6

“1 out of 5 - would not recommend”

credit

https://c2.staticflickr.com/4/3208/2506936869_7906a8f7ee_b.jpg
https://c2.staticflickr.com/4/3208/2506936869_7906a8f7ee_b.jpg

Nick Manganelli

• Running systematic variations in the same
event loop

• Framework implementation predating
Vary

• Manual book-keeping via string
substitutions

• Weight-based: Histo1D(model,
variableA_NOM, wgt_SYST_N)

• Non Weight-based: Histo1D(model,
variableA_SYST_M, wgt_SYST_M)

7

Lesson 9:

https://indico.fnal.gov/event/23628/contributions/241029/
https://indico.fnal.gov/event/23628/contributions/241029/

Nick Manganelli

Lesson 8: SCALING
• I should have watched scaling behaviors

• Early prototypes with systematics worked
fine

• Scaling up to the full set of ~75 systematic
variations made memory use a concern!

• batch resources ~ 2GB/core

• histograms copied per thread

• Good idea: backup plan for running either 1,
some, all variations easily (keeping an eye
on file-output/tracking/merging!)

• Good idea: Atomic-storage ala
boost::histogram (narf)

8

Scaling Behaviors - Typical Physics Problem

https://xkcd.com/1162

https://github.com/bendavid/narf
https://github.com/bendavid/narf
https://xkcd.com/1162
https://xkcd.com/1162

Nick Manganelli

Lesson 8: SCALING

• Categorization via graph-branching

• Analysis required multiple categories - (0, 1, 2, 3, 4+ b-tagged jets) x (4, 5, 6, 7, 8+ jets) x (~5
systematics) — systematic dependent quantities being categorized on!

• Driven by external constraint imposed: 1D histograms (PI concern about confusing other
students - admittedly, ROOT histogram n-dimensional slicing/projection is not the friendliest)

• Very costly to define all the histograms for all categorized-branch nodes!

• Setup time of minutes, event loop execution in 10s?!?

• Prefer ND Histos!

9

Nick Manganelli

Lesson 6: CONFIGURATION
10

Nick Manganelli

Lesson 6: CONFIGURATION
11

Nick Manganelli

Lesson 7: NON-UNIFORM SCALING DIMENSIONS

• Non-uniform scaling dimensions are a good way to trip up

• During analysis, we needed to take a few samples and split them into 2-4 sub-samples

• Different weight scaling, naming, histogram grouping for statistical inference

• Thought it would be great (‘cute’) to still run over the sample once…

• So I introduced some additional splits in the computation graph node… a lot of nontrivial work
and effort in order to do this for ‘production-ready’ case

• Voilà, 4x the histograms… and ~4x the memory (16GB for most important background when
using 1D histograms over many variables simultaneously for 8 threads!)

• Also lead to discovery of a problem with simultaneous Snapshots

12

failure to apply KISS

https://github.com/root-project/root/issues/7500
https://github.com/root-project/root/issues/7500

Nick Manganelli

Lesson 6: CONFIGURATION

Steering code via configuration files is especially useful
with JIT-ing via RDataFrame’s python interface

Store quantities to Define or Filter-on in e.g. YAML* **

Round-trip bookkeeping without modifying everything
by hand…

semi-arbitrary code execution (yes, use safe-load!)

13

* (Almost) Turing complete? Eh…
** Roundtrip read/update/write with comments is great, though

Computed and
round-trip’d
to the YAML

Nick Manganelli14

Indicates branch names of inputs for this variation

Variation type indicators for handling in the analyzer
Flag for that backup plan to limit number of systematics in a run

JIT’d Definitions and weights for final histogram filling
Flexibility > Runtime execution

Nick Manganelli

Lesson 5: All-In-One
BOOKKEEPING

All-in-one meta-info storage is a double-edged sword

 - Easier to look at information coherently

 - More work to parse and compare simple information
(i.e. just number of events between samples)

 - In the end, a win IMO

15

Nick Manganelli

Lesson 4: STRUCTURE

• Analysis Framework retained for too long
array-at-a-time manipulation (see left)

• MoA (Mess of Arrays), AoS, proxies?

• gist: structs versus arrays - lose a lot of
RVec convenience

• python proxies (bamboo)

• RDataFrame-native proxy/object-like
view (What’s possible? how much could/
should be Experiment responsibility? e.g.
Schema - NanoAOD has ~1 new version
per year)

16

Define(“MyJet_mask”, “Jet_pt > 30 && abs(Jet_eta) < 2.5…”)
Define(“MyJet_pt”, “Jet_pt[MyJet_mask]”)
Define(“MyJet_phi”, “Jet_phi[MyJet_mask]”)
Define(“MyJet_eta”, …)
…
Define(“MyMuon_pt”, “Muon_pt”

sketch of select_jets.py

https://gist.github.com/NJManganelli/d3e85526b2a4413d75d8ef199c64b650
https://indico.fnal.gov/event/23628/contributions/240756/attachments/154856/201530/220509_ROOT_bamboo.pdf
https://gist.github.com/NJManganelli/d3e85526b2a4413d75d8ef199c64b650
https://indico.fnal.gov/event/23628/contributions/240756/attachments/154856/201530/220509_ROOT_bamboo.pdf
https://github.com/NJManganelli/rdframework/blob/main/src/rdframework/objects/jets.py#L212-L237
https://github.com/NJManganelli/rdframework/blob/main/src/rdframework/objects/jets.py#L212-L237

Nick Manganelli

Lesson 3: NumPy-LIKE

17

• Hard to adjust to numpy-like array
manipulation

• How to create two distinct sub-collections
with complex multidimensional-cuts?

Simple Example: Create two sub-collections
of muons, which should not overlap, but have
different pT, isolation, and Id requirements…

Define("iso_mu_mask",
 "Muon_pt > 30 && abs(Muon_eta) <= 2.4 &&
 Muon_mediumId == true && Muon_pfIsoId >= 4")

Define("jpsi_cand_mu_mask",
 "Muon_pt > 3 && abs(Muon_eta) <= 2.4 &&
 Muon_looseId == true”)

Nick Manganelli

Lesson 3: NumPy-LIKE

18

• Hard to adjust to numpy-like array
manipulation

• How to create two distinct sub-collections
with complex multidimensional-cuts?

Explicitly via boolean mask inversion!

Define("iso_mu_mask",
 "Muon_pt > 30 && abs(Muon_eta) <= 2.4 &&
 Muon_mediumId == true && Muon_pfIsoId >= 4")

Define("jpsi_cand_mu_mask",
 "Muon_pt > 3 && abs(Muon_eta) <= 2.4 &&
 Muon_looseId == true &&
 iso_mu_mask == false")

Also applicable to awkward-array!

Nick Manganelli

if type(lookupMap) == str:
 #It's a string name, see if it's been declared in the ROOT instance
 try:
 if str(type(getattr(ROOT, lookupMap))) == "<class 'ROOT.map<string,vector<TH2Lookup*> >'>":
 pass
 except:
 ROOT.gInterpreter.Declare("std::map<std::string, std::vector<TH2Lookup*>> {0};".format(lookupMap))
 iLUM = getattr(ROOT, lookupMap)

Lesson 2: C++ Python

• Trial By Fire to learn

• ROOT.gROOT.ProcessLine,
ROOT.gInterpreter.Declare, hasattr,
getattr, isinstance

• Progress Bars, Look Up Tables (e.g. TH2)

• Testing C++ instantiated objects working
correctly

19

ROOT.gROOT.ProcessLine(".L SomeFunctions.cpp”)

Essential, extremely useful!

Nick Manganelli

• pdb (pdb.set_trace()) is essential when working from python

• Can’t always separate out simple test-scenario -> good way to dive into middle of code exec.

• C++ cout for event-loop checks

• More than once I forgot to prevent that code’s execution being skipped!

•

Lesson 1: DE- -ing and Code-building Code

20

Nick Manganelli

• pdb (pdb.set_trace()) is essential when working from python

• Can’t always separate out simple test-scenario -> good way to dive into middle of code exec.

• C++ cout for event-loop checks

• More than once I forgot to prevent that code’s execution being skipped!

• Ship-in-a-Bottle Syndrome biggest time-sink of analysis dev

• Building C++ code inside python-formatted strings -> Not ideal, but not always preferable to
move to pure C++

• No easy/direct access to the the ‘environment’ inside the event loop -> “BreakPoint” Proposal?

Lesson 1: DE- -ing and Code-building Code

21

Nick Manganelli

–Robert A. Heinlein

“I never learned from a man who agreed with me.”

22

Nick Manganelli

ROOT and the !ROOT Ecosystems

• Benchmarking the code and coming out fastest is fantastic

• Factor 3x* is small compared to the O(1000)-O(10000) improvement RDF/coffea
have against TTree::Draw-based frameworks (I know of several)

• Benchmarking the user experience is harder, but for many analysts, this time
probably dominates!

• Emphasis on new features like Vary, collection-aggregates/object-like
proxies, DefinePerSample, SampleInfo, Distributed, etc. is the right way to go at
this stage

• As much UX-enhancements as performance-enhancements

23

*Compiled?

Nick Manganelli24

RDataFrame Coming Soon

https://indico.fnal.gov/event/23628/contributions/241029/attachments/154864/201541/RDF%20%40%20ROOT%20workshop%202022.pdf
https://indico.fnal.gov/event/23628/contributions/241029/attachments/154864/201541/RDF%20%40%20ROOT%20workshop%202022.pdf

Nick Manganelli

Multi-Dimensional Histograms
• Easy, composable N-Dim histograms (N = 5, 9, …)

ala boost::histogram are really great (ROOT7
convergent evolution? Categorical, circular, …)

• Combination with UHI (standards) is extremely-
powerful, game-changing…

• I’ve been converting my workflows to this

• Doubtful I’ll ever look back…

• ROOT: histo.GetYAxis().SetRange(yBinLow,
yBinHigh); histo.GetZAxis().SetRangeUser(… ; …
histo.ProjectY(…)

• h[{“mva”: “merged_vTriplet”, “HT”: hist.tag.Slicer()
[700j : 1500j : sum], “nbtag”: hist.tag.Slicer()[3j : 4j :
sum]}].project(“dataset”,
“mva”).plot1d(overlay=“dataset”)

25

CMS Work In Progress (APS2022)

All plots from
one single
histogram

(9D)

some dozen lines: slicing + plotting

https://uhi.readthedocs.io/en/latest/index.html
https://xkcd.com/927
https://uhi.readthedocs.io/en/latest/index.html
https://xkcd.com/927

Nick Manganelli

BACKUP

26

Nick Manganelli

• Bulk of analysis in end-to-end mode (no
intermediate snapshots), ~8 threads

• Huge, branching computation graph with
thousands of Define and Filter calls

• Without Vary, a good amount of time in
python configuring the Define/Filter/
HistoXD calls on the RDF nodes

27

Nick Manganelli

Distributed and Scaling

• Potential with Distributed + Vary + DefinePerSample/SampleInfo to have a
single call that executed an entire analysis processing (all variables x cuts/
categories x systematic variations x samples…)

• What happens if this produces larger-than-memory results on the user?

• Writing histograms to disk in efficient way from the worker-node?

• Writing NumpyArrays out?

28

Nick Manganelli

500 1000 1500 20000

0.5

1

1.5

2

500 1000 1500 20000

0.5

1

1.5

2

500 1000 1500 20000

0.5

1

1.5

2

500 1000 1500 20000

0.5

1

1.5

2

500 1000 1500 20000

0.5

1

1.5

2
0

10

20

30

40
 nB=2 nJ=4ll

0

10

20

30

40
 nB=2 nJ=5ll

0

10

20

30

40
 nB=2 nJ=6ll

0

10

20

30

40

ttultrarare

ttVJets

EWK

stat err

 nB=2 nJ=7ll

0

10

20

30

40

tttt
Data
ttH
ttbb
ttother
stat+syst err
syst err

8≥ nB=2 nJll

<
Ev

en
ts

 /
G

eV
 >

Si
m

ul
at

io
n

D
at

a

 [GeV]TH

Work In Progress CMS
 (2 b-tagged jets)TH

 (13 TeV)-1101.2 fb
Plotting

• It takes 74 * 50 histograms to make one
PANEL in this plot (x 5 panels/canvas x 5
btag categories x 3 channels x 2 years x
dozens of variables)

• ROOT’s memory management made this
painful early on, with Projections and
Rebinning galore (not shown here!)

• Frustrating text scaling in different-sized
pads (-> font precision 43 had its own quirks)

• Ticks, labelling them when margins -> 0

• aggregating and rebinning from python ->
expensive for loops -> Multi-Dim Histograms
preferable!

29

Nick Manganelli

ML-training

• SOFIE might greatly simplify the issue of
inference

• For training, being able to use the plethora
of expertise, examples, code being
developed by the huge data science and AI
research communities would be really
welcome -> “Generator” interface?

30

